THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама
наблюдательных приборов , концентрация оптического излучения на приёмнике или мишени и т. п.

Адаптивная оптика находит применение в конструировании наземных астрономических телескопов , в системах оптической коммуникации, в промышленной лазерной технике, в офтальмологии и пр., где позволяет компенсировать, соответственно, атмосферные искажения, аберрации оптических систем , в том числе оптических элементов глаза человека.

Адаптивная оптическая система

Конструктивно адаптивная оптическая система обычно состоит из датчика, измеряющего искажения (датчик волнового фронта), корректора волнового фронта и системы управления, реализующей связь между датчиком и корректором.

Датчики волнового фронта

Существуют разнообразные методы, позволяющие как качественно оценивать, так и количественно измерять профиль волнового фронта. Наиболее популярными в настоящее время являются датчики интерференционного типа и типа Шака-Гартмана.

Действие интерференционных датчиков основано на когерентном сложении двух световых волн и формировании интерференционной картины с зависящей от измеряемого волнового фронта интенсивностью. При этом, в качестве второй (опорной) световой волны может использоваться волна, полученная из исследуемого излучения путём пространственной фильтрации.

Датчик типа Шака-Гартмана состоит из матрицы микролинз и расположенного в их фокальной плоскости фотоприёмника. Каждая линза обычно имеет размеры от 1 мм и меньше. Линзы датчика разделяют исследуемый волновой фронт на субапертуры (апертура одной микролинзы), формируя в фокальной плоскости совокупность фокальных пятен. Положение каждого из пятен зависит от локального наклона волнового фронта пучка, пришедшего на вход датчика. Измеряя поперечные смещения фокальных пятен, можно вычислить средние углы наклонов волнового фронта в пределах каждой из субапертур. По этим величинам вычисляется профиль волнового фронта на всей апертуре датчика.

Корректоры волнового фронта

Адаптивное (деформируемое) зеркало (англ. ) является наиболее популярным инструментом для управления волновым фронтом и коррекции оптических аберраций. Идею коррекции волнового фронта составным зеркалом предложил В. П. Линник в 1957 году . Возможность создания такой системы появилась с середины 1990-х годов в связи с развитием технологий и с возможностью точнейшего компьютерного управления и контроля.

В частности, широкое распространение получили униморфные (полупассивный-биморф) зеркала. Такое зеркало состоит из тонкой пластины, изготовленной из пьезоэлектрического материала, на которой особым образом расположены электроды . Пластина присоединена к подложке, на передней поверхности которой сформирована оптическая поверхность. При приложении напряжения к электродам пьезоэлектрическая пластина сжимается (или расширяется), что приводит к изгибу оптической поверхности зеркала. Особое пространственное расположение электродов позволяет формировать сложные рельефы поверхности.

Скорость управления формой адаптивного зеркала позволяет использовать его для компенсации динамических аберраций в режиме реального времени .

В астрономических приложениях для систем адаптивной оптики нужен опорный источник, который служил бы эталоном блеска для коррекции искажений, создаваемых атмосферной турбулентностью, причём он должен быть расположен на достаточно близком угловом расстоянии от исследуемой области неба. В некоторых системах в качестве такого источника используется «искусственная звезда », созданная возбуждением атомов натрия на высоте 90 км над поверхностью Земли наземным лазером .

См. также

Напишите отзыв о статье "Адаптивная оптика"

Примечания

Литература

  • Воронцов М. А., Шмальгаузен В. И. Принципы адаптивной оптики. - М .: Наука, 1985.
  • Воронцов М. А., Корябин А. В., Шмальгаузен В. И. Управляемые оптические системы. - М .: Наука, 1988.

Ссылки

Отрывок, характеризующий Адаптивная оптика

Соня, Наташа, Петя, Анна Михайловна, Вера, старый граф, обнимали его; и люди и горничные, наполнив комнаты, приговаривали и ахали.
Петя повис на его ногах. – А меня то! – кричал он. Наташа, после того, как она, пригнув его к себе, расцеловала всё его лицо, отскочила от него и держась за полу его венгерки, прыгала как коза всё на одном месте и пронзительно визжала.
Со всех сторон были блестящие слезами радости, любящие глаза, со всех сторон были губы, искавшие поцелуя.
Соня красная, как кумач, тоже держалась за его руку и вся сияла в блаженном взгляде, устремленном в его глаза, которых она ждала. Соне минуло уже 16 лет, и она была очень красива, особенно в эту минуту счастливого, восторженного оживления. Она смотрела на него, не спуская глаз, улыбаясь и задерживая дыхание. Он благодарно взглянул на нее; но всё еще ждал и искал кого то. Старая графиня еще не выходила. И вот послышались шаги в дверях. Шаги такие быстрые, что это не могли быть шаги его матери.
Но это была она в новом, незнакомом еще ему, сшитом без него платье. Все оставили его, и он побежал к ней. Когда они сошлись, она упала на его грудь рыдая. Она не могла поднять лица и только прижимала его к холодным снуркам его венгерки. Денисов, никем не замеченный, войдя в комнату, стоял тут же и, глядя на них, тер себе глаза.
– Василий Денисов, друг вашего сына, – сказал он, рекомендуясь графу, вопросительно смотревшему на него.
– Милости прошу. Знаю, знаю, – сказал граф, целуя и обнимая Денисова. – Николушка писал… Наташа, Вера, вот он Денисов.
Те же счастливые, восторженные лица обратились на мохнатую фигуру Денисова и окружили его.
– Голубчик, Денисов! – визгнула Наташа, не помнившая себя от восторга, подскочила к нему, обняла и поцеловала его. Все смутились поступком Наташи. Денисов тоже покраснел, но улыбнулся и взяв руку Наташи, поцеловал ее.
Денисова отвели в приготовленную для него комнату, а Ростовы все собрались в диванную около Николушки.
Старая графиня, не выпуская его руки, которую она всякую минуту целовала, сидела с ним рядом; остальные, столпившись вокруг них, ловили каждое его движенье, слово, взгляд, и не спускали с него восторженно влюбленных глаз. Брат и сестры спорили и перехватывали места друг у друга поближе к нему, и дрались за то, кому принести ему чай, платок, трубку.
Ростов был очень счастлив любовью, которую ему выказывали; но первая минута его встречи была так блаженна, что теперешнего его счастия ему казалось мало, и он всё ждал чего то еще, и еще, и еще.
На другое утро приезжие спали с дороги до 10 го часа.
В предшествующей комнате валялись сабли, сумки, ташки, раскрытые чемоданы, грязные сапоги. Вычищенные две пары со шпорами были только что поставлены у стенки. Слуги приносили умывальники, горячую воду для бритья и вычищенные платья. Пахло табаком и мужчинами.
– Гей, Г"ишка, т"убку! – крикнул хриплый голос Васьки Денисова. – Ростов, вставай!
Ростов, протирая слипавшиеся глаза, поднял спутанную голову с жаркой подушки.
– А что поздно? – Поздно, 10 й час, – отвечал Наташин голос, и в соседней комнате послышалось шуршанье крахмаленных платьев, шопот и смех девичьих голосов, и в чуть растворенную дверь мелькнуло что то голубое, ленты, черные волоса и веселые лица. Это была Наташа с Соней и Петей, которые пришли наведаться, не встал ли.
– Николенька, вставай! – опять послышался голос Наташи у двери.
– Сейчас!
В это время Петя, в первой комнате, увидав и схватив сабли, и испытывая тот восторг, который испытывают мальчики, при виде воинственного старшего брата, и забыв, что сестрам неприлично видеть раздетых мужчин, отворил дверь.
– Это твоя сабля? – кричал он. Девочки отскочили. Денисов с испуганными глазами спрятал свои мохнатые ноги в одеяло, оглядываясь за помощью на товарища. Дверь пропустила Петю и опять затворилась. За дверью послышался смех.
– Николенька, выходи в халате, – проговорил голос Наташи.
– Это твоя сабля? – спросил Петя, – или это ваша? – с подобострастным уважением обратился он к усатому, черному Денисову.
Ростов поспешно обулся, надел халат и вышел. Наташа надела один сапог с шпорой и влезала в другой. Соня кружилась и только что хотела раздуть платье и присесть, когда он вышел. Обе были в одинаковых, новеньких, голубых платьях – свежие, румяные, веселые. Соня убежала, а Наташа, взяв брата под руку, повела его в диванную, и у них начался разговор. Они не успевали спрашивать друг друга и отвечать на вопросы о тысячах мелочей, которые могли интересовать только их одних. Наташа смеялась при всяком слове, которое он говорил и которое она говорила, не потому, чтобы было смешно то, что они говорили, но потому, что ей было весело и она не в силах была удерживать своей радости, выражавшейся смехом.
– Ах, как хорошо, отлично! – приговаривала она ко всему. Ростов почувствовал, как под влиянием жарких лучей любви, в первый раз через полтора года, на душе его и на лице распускалась та детская улыбка, которою он ни разу не улыбался с тех пор, как выехал из дома.
– Нет, послушай, – сказала она, – ты теперь совсем мужчина? Я ужасно рада, что ты мой брат. – Она тронула его усы. – Мне хочется знать, какие вы мужчины? Такие ли, как мы? Нет?
– Отчего Соня убежала? – спрашивал Ростов.
– Да. Это еще целая история! Как ты будешь говорить с Соней? Ты или вы?

: «Давно интересует как работает лазерная система стабилизации изображений у телескопов. На фотографиях телескопы с такой системой очень красиво выглядят.»

Попробуем сейчас разобраться.

Атмосфера, необходимая для людей и других форм жизни на Земле, практически повсеместно проклинается астрономами. Она прекрасно подходит для дыхания, но когда дело доходит до астрономических наблюдений тусклых объектов, атмосфера постоянно стремится испортить изображение.

Эта проблема была известна еще Исааку Ньютону, в 1704 он понял, что турбулентность атмосферы влияет на формирование изображения. Точно так же, как тепловые волны, парящие над нагретым участком земли, могут испортить нам его вид, изображение удаленного объекта, сформированное телескопом, искажается благодаря температурным изменениям в отделяющем нас атмосферном слое. Поэтому свет, входящий в телескоп, доходит до него по разным траекториям и попадает в разные точки входной апертуры. Размер изображения и его качество зависят от статистической характеристики пространственной частоты турбулентности, называемой длиной когерентности, или r0, обычно равной 10 см в хорошем месте. Следовательно, даже для хорошего места разрешающая способность большого телескопа (диаметром 4 или 8 метров) сравнима с той, что дает 10-см телескоп; изображение не будет резче того, что позволяет атмосфера.

Атмосферная турбулентность действует так, как если бы одна большая апертура телескопа была заменена множеством апертур малых телескопов размера r0 и каждый телескоп испытывал бы тряску независимо от других и так, что отдельные точки изображения почти никогда не совпадали бы. Степень этой тряски задается другим статистическим параметром – временем когерентности, имеющим обычно порядок 1 мс.

Изображение в результате становится нечетким благодаря дрожанию, похожему на дрожание руки, но с частотой, достигающей тысячи герц!

А что же делать?

Одно из решений этой проблемы, предложенное Ньютоном, устанавливать телескопы как можно выше. Это решение объясняет, почему современные астрономические телескопы устанавливаются на вершинах гор, помещаются на воздушных шарах и самолетах или, как например космический телескоп Хаббл, размещаются на околоземной орбите. Так как космический телескоп располагается за предела-
ми земной атмосферы, он реализует полную разрешающую способность своей 2,4-м апертуры и дает возможность получать революционные результаты в астрофизике. Однако такой телескоп пока один, он позволяет проводить только ограниченное количество наблюдений. Если можно было бы реализовать разрешающую способность таких больших апертур, это было бы главным успехом в астрономии. К счастью, существует технология, которая позволяет это сделать.

В 1953 году Хорас Бэбкок (Horace Babcock) предложил инструмент, который мог бы измерять атмосферные искажения в реальном времени и корректировать их, используя быстро перестраиваемые формоизменяющиеся оптические компоненты. Доступные в то время технологии не позволяли решить эту задачу, однако основная предложенная концепция, поддержанная современными технологиями, эволюционировала со временем в то, что сейчас и представляет предмет адаптивной оптики.

Адаптивная оптика — автоматическая оптико-механическая система, предназначенная для исправления в реальном времени атмосферных искажений изображения, которое дает телескоп. Системы адаптивной оптики применяются в оптических и инфракрасных телескопах наземного базирования для повышения четкости изображения. Они необходимы также для работы астрономических интерферометров, используемых для измерения размеров звезд и поиска их близких спутников, особенно планет. Системы адаптивной оптики имеют и неастрономические приложения: например, когда требуется наблюдать форму искусственных спутников Земли с целью их опознания. Разработка систем адаптивной оптики началась в 1970-е годы и приобрела особый размах в 1980-е в связи с программой «звездных войн», включавшей разработку лазерного противоспутникового оружия наземного базирования. Первые штатные системы активной оптики начали работать на крупных астрономических телескопах около 2000 года.

Идущие от космических источников лучи света, проходя сквозь неоднородную атмосферу Земли, испытывают сильные искажения. Например, волновой фронт света, приходящего от далекой звезды (которую можно считать бесконечно удаленной точкой), на внешней границе атмосферы имеет идеально плоскую форму. Но пройдя сквозь турбулентную воздушную оболочку и достигнув поверхности Земли, плоский волновой фронт теряет свою форму и становится похож на волнующуюся морскую поверхность. Это приводит к тому, что изображение звезды превращается из «точки» в непрерывно дрожащую и бурлящую кляксу. При наблюдении невооруженным глазом мы воспринимаем это как быстрое мигание и дрожание звезд. При наблюдении в телескоп вместо «точечной» звезды мы видим дрожащее и переливающееся пятно; изображения близких друг к другу звезд сливаются и становятся неразличимы по отдельности; протяженные объекты — Луна и Солнце, планеты, туманности и галактики — теряют резкость, у них пропадают мелкие детали.

Обычно на фотографиях, полученных телескопами, угловой размер мельчайших деталей составляет 2-3І; на лучших обсерваториях он изредка составляет 0,5І. Следует иметь в виду, что при отсутствии атмосферных искажений телескоп с объективом диаметром в 1 м дает угловое разрешение около 0,1І, а с объективом в 5 м дает разрешение в 0,02І. Фактически такое высокое качество изображения у обычных наземных телескопов никогда не реализуется из-за влияния атмосферы.

Пассивный метод борьбы с атмосферными искажениями заключается в том, что обсерватории строят на вершинах гор, обычно на высоте 2-3 км, выбирая при этом места с наиболее прозрачной и спокойной атмосферой (см. АСТРОКЛИМАТ). Но строить обсерватории и работать на высоте более 4,5 км практически невозможно. Поэтому даже на самых лучших высокогорных обсерваториях большая часть атмосферы располагается все же выше телескопа и существенно портит изображения.

Роль астронома-наблюдателя. Вообще говоря, задачу «получить изображение лучше, чем дает атмосфера», в астрономии решают разными средствами. Исторически, в эпоху визуальных наблюдений в телескоп, астрономы научились внимательно ловить моменты хорошего изображения. В силу случайного характера атмосферных искажений в некоторые мгновения они становятся незначительными, и в изображении проявляются мелкие детали. Наиболее опытные и настойчивые наблюдатели часами караулили эти моменты и смогли таким образом зарисовать очень тонкие детали поверхности Луны и планет, а также обнаружить и измерить очень тесные двойные звезды. Но крайняя необъективность этого метода ярко проявилась в истории с марсианскими каналами: одни наблюдатели их видели, другие — нет.

Применение в астрономии фотопластинок позволило выявить множество новых объектов, недоступных глазу из-за их низкой яркости. Однако фотоэмульсия при слабой освещенности имеет очень малую чувствительность к свету, поэтому в начале 20 в. при астрономическом фотографировании требовались многочасовые экспозиции. За это время атмосферное дрожание заметно снижает качество изображения по сравнению визуальным.

Некоторые астрономы пытались бороться с этим явлением, самостоятельно исполняя роль активной и отчасти адаптивной оптических систем. Так, американские астрономы Дж.Э. Килер (Keeler J.E., 1857-1900) и В. Бааде (Baade W., 1893-1960) регулировали во время экспозиции фокус телескопа, наблюдая с очень большим увеличением (около 3000 раз) форму комы звезды на краю поля зрения. А известный конструктор телескопов Дж.У. Ричи (Ritchey G.W., 1864-1945) разработал особую фотокассету на подвижной платформе — так называемую «кассету Ричи»; с ее помощью можно быстро выводить фотопластинку из фокуса телескопа, заменяя ее фокусировочным прибором (нож Фуко), а затем возвращать кассету точно в прежнее положение. Во время экспозиции Ричи несколько раз отодвигал кассету, когда чувствовал, что нужно поправить фокус. К тому же, наблюдая за качеством изображения и его положением в окуляр, размещенный рядом с кассетой, Ричи постоянно поправлял положение кассеты и научился быстро закрывать затвор, когда изображения становились плохими. Эта работа требовала от астронома очень высокого напряжения, но зато сам Ричи получил таким способом великолепные фотографии спиральных галактик, на которых впервые стали видны отдельные звезды; эти прекрасные снимки воспроизводились во всех учебниках 20 в. Однако широкого применения кассета Ричи не получила ввиду большой сложности работы с ней.

Развитие фото- и видеотехники позволило быстро фиксировать изображение объекта в режиме киносъемки с последующим отбором наиболее удачных изображений. Были разработаны и более тонкие методы апостериорного анализа изображений, например, методы спекл-интерферометрии, позволяющие выявлять в размытом атмосферой пятне расположение и яркость объектов с заранее известными свойствами, таких как «точечные» звезды. Математические методы восстановления изображений также позволяют повышать контраст и выявлять мелкие детали. Но указанные методы неприменимы в процессе наблюдения

Принципы адаптивной оптики.

Запуск на орбиту в 1990 оптического телескопа «Хаббл» диаметром 2,4 м и его чрезвычайно эффективная работа в последующие годы доказали большие возможности телескопов, не обремененных атмосферными искажениями. Но высокая стоимость создания и эксплуатации Космического телескопа заставили астрономов искать пути компенсации атмосферных помех у поверхности Земли. Появление быстродействующих компьютеров и, не в последнюю очередь, желание военных создать систему космического оружия с лазерами наземного базирования сделали актуальной работу по компенсации атмосферных искажений изображения в реальном времени. Система адаптивной оптики позволяет выравнивать и стабилизировать волновой фронт прошедшего сквозь атмосферу излучения, дает возможность не только получать в фокусе телескопа четкое изображение космического объекта, но и выводить с Земли в космос остро сфокусированный луч лазера. К счастью, военные устройства такого типа не были реализованы, но проделанная в этом направлении работа чрезвычайно помогла астрономам почти полностью реализовать теоретические параметры крупных телескопов по качеству изображения. К тому же разработка активной оптики сделала возможным строительство наземных оптических интерферометров на базе телескопов большого диаметра: поскольку после прохождения через атмосферу длина когерентности света составляет всего около 10 см, наземный интерферометр без системы адаптивной оптики работать не может.

Задача адаптивной оптики состоит в нейтрализации в реальном времени искажений, вносимых атмосферой в изображение космического объекта. Обычно адаптивная система работает совместно с системой активной оптики, поддерживающей конструкцию и оптические элементы телескопа в «идеальном» состоянии. Действуя совместно, системы активной и адаптивной оптики приближают качество изображения к предельно высокому, определяемому принципиальными физическими эффектами (в основном — аберрацией света на объективе телескопа). В принципе системы активной и адаптивной оптики подобны друг другу. Обе они содержат три основных элемента: 1) анализатор изображения, 2) компьютер с программой, вырабатывающей сигналы коррекции и 3) исполняющие механизмы, изменяющие оптическую систему телескопа так, чтобы изображение стало «идеальным». Количественное различие между этими системами состоит в том, что коррекцию недостатков самого телескопа (активная оптика) можно проводить сравнительно редко — с интервалом от нескольких секунд до 1 минуты; но исправлять помехи, вносимые атмосферой (адаптивная оптика), необходимо значительно чаще — от нескольких десятков до тысячи раз в секунду. Поэтому система адаптивной оптики не может изменять форму массивного главного зеркала телескопа и вынуждена управлять формой специального дополнительного «легкого и мягкого» зеркала, установленного у выходного зрачка телескопа.

Реализаци я адаптивной оптики

Впервые на возможность коррекции атмосферных искажений изображения при помощи деформируемого зеркала указал в 1953 американский астроном Хорас Бэбкок (Babcock H.W., р. 1912). Для компенсации искажений он предложил использовать отражение света от масляной пленки, поверхность которой деформирована электростатическими силами. Тонкопленочные зеркала с электростатическим управлением разрабатываются для аналогичных целей и в наши дни, хотя более популярным исполнительным механизмом служат пьезоэлементы с зеркальной поверхностью.

Плоский фронт световой волны, пройдя сквозь атмосферу, искажается и вблизи телескопа имеет довольно сложную структуру. Для характеристики искажения обычно используют параметр r0 — радиус когерентности волнового фронта, определяемый как расстояние, на котором среднеквадратическая разность фаз достигает 0,4 длины волны. В видимом диапазоне, на волне длиной 500 нм, в подавляющем большинстве случаев r0 лежит в интервале от 2 до 20 см; условия, когда r0 = 10 см, нередко считаются типичными. Угловое разрешение крупного наземного телескопа, работающего через турбулентную атмосферу с длинной экспозицией, равно разрешению идеального телескопа диаметром r0, работающего вне атмосферы. Поскольку значение r0 возрастает приблизительно пропорционально длине волны излучения (r0 µ l6/5), атмосферные искажения в инфракрасном диапазоне существенно меньше, чем в видимом.

Для небольших наземных телескопов, диаметр которых сравним с r0, можно считать, что в пределах объектива волновой фронт плоский и в каждый момент времени наклонен случайным образом на некоторый угол. Наклон фронта соответствует смещению изображения в фокальной плоскости или, как говорят астрономы, дрожанию (в физике атмосферы принят термин «флуктуации угла прихода»). Для компенсации дрожания в таких телескопах достаточно ввести плоское управляемое зеркало, наклоняющееся по двум взаимно перпендикулярным осям. Опыт показывает, что такое простейшее исполнительное устройство в системе адаптивной оптики малого телескопа весьма существенно повышает качество изображения при длительных экспозициях.

У телескопов большого диаметра (D) на площади объектива укладывается порядка (D/r0)2 квазиплоских элементов волнового фронта. Этим числом и определяется сложность конструкции компенсирующего зеркала, т.е. количество пьезоэлементов, которые, сжимаясь и расширяясь под действием управляющих сигналов с высокой частотой (до сотен герц), изменяют форму «мягкого» зеркала. Нетрудно оценить, что на крупном телескопе (D = 8-10 м) полное исправление формы волнового фронта в оптическом диапазоне потребует корректирующего зеркала с (10 м / 10 см)2 = 10 000 управляемыми элементами. При нынешнем развитии систем адаптивной оптики это практически невыполнимо. Однако в близком инфракрасном диапазоне, где значение r0 = 1 м, корректирующее зеркало должно содержать около 100 элементов, что вполне достижимо. Например, система адаптивной оптики интерферометра Очень большого телескопа (VLT) Европейской южной обсерватории в Чили имеет корректирующее зеркало из 60-ти управляемых элементов.

Изображения звезд, полученные на 10-м телескопе Кека с включенным и выключенным исправлением турбулентности.

Для выработки сигналов, управляющих формой корректирующего зеркала, обычно анализируется мгновенное изображение яркой одиночной звезды. В качестве приемника используется анализатор волнового фронта, размещенный у выходного зрачка телескопа. Через матрицу из множества небольших линз свет звезды попадает на ПЗС-матрицу, сигналы которой оцифровываются и анализируются компьютером. Управляющая программа, изменяя форму корректирующего зеркала, добивается того, чтобы изображение звезды имело идеально «точечный» вид.

Эксперименты с системами адаптивной оптики начались в конце 1980-х, а к середине 1990-х уже были получены весьма обнадеживающие результаты. С 2000 практически на всех крупных телескопах используются такие системы, позволяющие довести угловую разрешающую способность телескопа до его физического (дифракционного) предела. В конце ноября 2001 система адаптивной оптики начала работать на 8,2-метровом телескопе Йепун (Yepun), входящем в состав Очень большого телескопа (VLT) Европейской южной обсерватории в Чили. Это существенно улучшило качество наблюдаемой картины: теперь угловой диаметр изображений звезд составляет 0,07І в диапазоне K (2,2 мкм) и 0,04І в диапазоне J (1,2 мкм).

Искусственная звезда. Для быстрого анализа изображения в системе адаптивной оптики используется опорная звезда, которая должна быть весьма яркой, поскольку ее свет делится анализатором волнового фронта на сотни каналов и в каждом из них регистрируется с частотой около 1 кГц. К тому же яркая опорная звезда должна располагаться на небе вблизи изучаемого объекта. Однако в поле зрения телескопа далеко не всегда встречаются подходящие звезды: ярких звезд на небе не так много, поэтому до недавних пор системам адаптивной оптики были доступны наблюдения лишь 1% небосвода. Чтобы снять это ограничение, было предложено использовать «искусственный маячок», который располагался бы вблизи изучаемого объекта и помогал зондировать атмосферу. Эксперименты показали, что для работы активной оптики очень удобно при помощи специального лазера создавать в верхних слоях атмосферы «искусственную звезду» (LGS = Laser Guide Star) — маленькое яркое пятно, постоянно присутствующее в поле зрения телескопа. Как правило, для этого используется лазер непрерывного действия с выходной мощностью в несколько ватт, настроенный на частоту резонансной линии натрия (например, на линию D2 Na). Его луч фокусируется в атмосфере на высоте около 90 км, там, где присутствует естественный слой воздуха, обогащенный натрием, свечение которого как раз и возбуждается лазерным лучом. Физический размер светящейся области составляет около 1 м, что с расстояния в 100 км воспринимается как объект с угловым диаметром около 1І.

Например, в системе ALFA (Adaptive optics with Laser For Astronomy), разработанной в Институте внеземной физики и Институте астрономии Общества им. Макса Планка (Германия) и пущенной в опытную эксплуатацию в 1998, аргоновый лазер накачки мощностью 25 Вт возбуждает лазер на красителях выходной мощность 4,25 Вт, который и дает излучение в линии D2 натрия. Это устройство создает искусственную звезду с визуальным блеском 9-10. Правда, появление в атмосфере аэрозоля или наблюдение на больших зенитных расстояниях существенно снижают блеск и качество искусственной звезды.

Поскольку луч мощного лазера способен ночью ослепить пилота самолета, астрономы предпринимают меры безопасности. Видеокамера с полем зрения 200 следит через тот же телескоп за областью неба вокруг искусственной звезды и при появлении любого объекта выдает команду на заслонку, перекрывающую лазерный луч.

Создание в конце 20 в. систем адаптивной оптики открыло новые перспективы перед наземной астрономией: угловое разрешение крупных наземных телескопов в видимом диапазоне вплотную приблизилось к возможностям Космического телескопа «Хаббл», а в близком инфракрасном диапазоне даже заметно превысило их. Адаптивная оптика позволит в самое ближайшее время ввести в строй крупные оптические интерферометры, способные, в частности, исследовать планеты у других звезд.

На горе Хопкинс в Аризоне пучок из пяти лазерных лучей направлен в небо для улучшения изображения 6.5-метрового мультизеркального телескопа (MMT).

Группа астрономов Аризонского университета под руководством Майкла Харта разработала методику, которая позволяет калибровать поверхность телескопа с очень высокой точностью, что приводит к получению очень четких изображений объектов, которые обычно получались весьма размытыми.

Лазерная адаптивная оптика – относительно новая методика улучшения изображения на наземных телескопах. Прекрасно иметь возможность использовать космические телескопы такие как «Хаббл» или в недалеком будущем «Джеймс Уэбб», но их запуск и эксплуатация, безусловно, обходятся очень дорого. И главное, существует огромное количество астрономов претендующих на очень ограниченное время работы на этих телескопах. В таких телескопах, как Очень большой телескоп (ESO VLT) в Чили, или телескоп Кек на Гавайях уже используется лазерная адаптивная оптика для улучшения качества изображения.

Изначально адаптивная оптика фокусировалась на самой яркой звезде вблизи от области наблюдения телескопа, а приводы в задней части зеркала очень быстро перемещались компьютером для компенсации атмосферных искажений. Однако, возможности такой системы ограничены наличием областями неба вблизи ярких звезд.

Лазерная адаптивная оптика гораздо гибче в использовании – технология использует один лазер для возбуждения молекул атмосферы для появления свечения, которое используется в качестве «путеводной звезды» для калибровки зеркала, чтобы компенсировать искажения, вызванные турбулентностью атмосферы. Компьютер анализирует свет от искусственной «путеводной звезды» и определяет поведение атмосферы, изменяя форму поверхности зеркала для компенсации искажений.

При использовании единственного лазера, адаптивная оптика может компенсировать турбулентность только на весьма ограниченном поле зрения. Новая технология, которая впервые была применена на 6.5-мметровом мультизеркальном телескопе ММТ в Аризоне, включает не один, а пять лазеров, чтобы создать пять отдельных «путеводных звезд» на широком поле зрения в две угловые минуты. Угловое разрешение телескопа меньше, чем у системы с одним лазером, для примера, телескоп Кек или ESO VLT могут делать снимки с угловым разрешением 30-60 угловых миллисекунд, но возможность иметь более четкое изображение на большом поле зрения имеет массу преимуществ.

Возможность проводить спектральные исследования старых тусклых галактик – одна из возможных сфер применения этой технологии. С помощью спектрального анализа ученые способны гораздо лучше понять строение и структуру космических объектов. При использовании этой технологии, изучение спектра галактик возрастом десять миллиардов лет, а у них очень большое красное смещение, возможно даже с поверхности Земли.

Также при использовании лазерной технологи гораздо проще структурировать сверхмассивные скопления звезд, поскольку разнесенные по времени снимки с телескопа позволят астрономам понять, какие звезды являются частью скопления, а какие гравитационно независимы.

А про космос я вам еще сейчас что нибудь напомню: вспомните и как работает . А теперь прогуляйтесь по Оригинал статьи находится на сайте ИнфоГлаз.рф Ссылка на статью, с которой сделана эта копия -

Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

Факультет Фотоники и Оптоинформатики

Кафедра Компьютерной Фотоники и Видеоинформатики

по дисциплине Теория Систем и Системный Анализ

«АНАЛИТИЧЕСКИЙ ОБЗОР ХАРАКТЕРИСТИК СОВРЕМЕННЫХ КОМПОНЕНТОВ АДАПТИВНЫХ ОПТИЧЕСКИХ СИСТЕМ »

Студент: Романов И.Е.

Группа: 4352

Преподаватель: Гуров И.П.

Санкт-Петербург

Введение …………………………………………………….………………….2

Адаптивная оптическая система………………………………………………3

Датчики волнового фронта …………………………………………..………..5

Корректоры волнового фронта……………………………………….………..9

1)Сегментированные зеркала ……..........................................................10

2)Зеркала со сплошной поверхностью………………………………...11

2.1)Биморфные зеркала……………………………………….....12

2.2)Мембранные зеркала……………………..………………….14

3) MOEMS (кремниевая технология)………………..………………...14

Заключение……………………………………………………..……………...15

Список литературы …………………………………………………………...16

Дополнительные источники информации………………………………… ..17

Введение

Адаптивная оптика (АО) - раздел оптики, занимающийся разработкой оптических систем с динамическим управлением формой волнового фронта для компенсации случайных возмущений и повышения предела разрешения наблюдательных приборов, степени концентрации излучения на приемнике или мишени. Адаптивная оптика начала интенсивно развиваться в 1950-е гг. в связи с задачей компенсации искажений фронта, вызванных атмосферной турбулентностью и накладывающих основное ограничение на разрешающую способность наземных телескопов. Позднее к этому добавились проблемы создания орбитальных телескопов и мощных лазерных излучателей, подверженных другим видам помех.

Адаптивная оптика находит применение в различных областях науки и техники. Например, в конструировании наземных астрономических телескопов, в системах оптической коммуникации, в промышленной лазерной технике, в медицине и пр., где позволяет компенсировать, соответственно, атмосферные искажения, аберрации оптических систем, в том числе оптических элементов глаза человека.

Целью данной работы является изучение адаптивных оптических систем, а также проведение аналитического обзора на характеристики их компонентов.

Адаптивная оптическая система

Впервые на возможность коррекции атмосферных искажений изображения при помощи деформируемого зеркала указал в 1953 году американский астроном Хорас Бэбкок (Babcock H.W). Он предположил создание инструмента, который бы, выполнял измерение динамических атмосферных искажений в реальном времени и их корректировку с помощью быстро перестраиваемых формоизменяющих оптических элементов . Однако реализовать его идеи на тот момент не удалось из-за ограниченности технологий.

Основная задача, которую можно решить системой адаптивной оптики, заключается в устранении возмущений волнового фронта, вызываемых неконтролируемыми случайными воздействиями. К наиболее известным системам такого типа относятся:

    Наземные телескопы, вследствие неоднородности земной атмосферы разрешающая способность данных систем снижается.

    Системы формирования и фокусировки лазерного излучения.

    Лазерные измерительные системы, работающие в атмосфере.

    Оптические системы мощных лазеров.

Реализация адаптивных оптических систем определяется конкретным, решаемым ею, кругом задач. Однако общие принципы построения таких систем одинаковы. Конструктивно адаптивная оптическая система обычно состоит из датчика, измеряющего искажения (датчик волнового фронта), корректора волнового фронта и системы управления, реализующей связь между датчиком и корректором. Общая схема адаптивной оптической схемы приведена на Рис. 1. .

Рис. 1. Общая схема адаптивной оптической системы

Датчики волнового фронта

Датчик волнового фронта (ДВФ) является одним из элементов адаптивной системы корректировки лазерного излучения. Его задача – измерять кривизну волнового фронта и передавать эти измерения на обрабатывающее устройство (Рис.2).

Рис. 2. Изображение искаженного волнового фронта, получаемое с помощью массива микролинз.

Основными причинами кривизны волнового фронта являются:

    Турбулентность атмосферы.

    Неидеальность форм оптических элементов системы.

    Погрешности при юстировке системы и др.

Сегодня существует большое разнообразие ДВФ. Однако, наиболее распространенный - на основе схемы Шака-Гартмана (Рис.3.).

Рис. 3. Типовая схема датчика Гартмана

История создания такого датчика началась в 1900х годах, когда немецкий физик и астроном Йоханнес Франц Гартман решил использовать множество малых апертур для отслеживания пути распространения отдельных световых лучей через большой телескоп, что позволило ему проверить качество изображения. Позднее, в 1960х, Роланд Шак и Бен Платт модифицировали эту технологию, заменив апертуры на множество линз (линзовый растр) .

Такой датчик наиболее часто используется в системах корректировки волнового фронта благодаря своим достоинствам. Одно из главных преимуществ датчика Шака-Гартмана – это его способность измерять большой диапазон наклонов волнового фронта, когда искажения другими методами (например, интерференционными) не измерить. Такой датчик может быть использован для определения аберраций в профиле неколлимированного лазерного пучка. Кроме того, у него малая чувствительность к механическим вибрациям, и он может работать с импульсами большой мощности и фемтосекундной длительностью.

Датчик типа Шака-Гартмана состоит из матрицы микролинз и расположенного в их фокальной плоскости фотоприёмника. Каждая линза обычно имеет размеры от 1 мм и меньше. Линзы датчика разделяют исследуемый волновой фронт на субапертуры (апертура одной микролинзы), формируя в фокальной плоскости совокупность фокальных пятен. Положение каждого из пятен зависит от локального наклона волнового фронта пучка, пришедшего на вход датчика. Измеряя поперечные смещения фокальных пятен, можно вычислить средние углы наклонов волнового фронта в пределах каждой из субапертур. По этим величинам вычисляется профиль волнового фронта на всей апертуре датчика .

Рис. 4. Принцип работы датчика волнового фронта

Когда приходящий волновой фронт плоский, все изображения расположены в правильной сетке, определенной геометрией матрицы линз. Как только волновой фронт искажается, изображения смещаются со своих номинальных положений. Смещения центроидов изображения в двух ортогональных направлениях пропорциональны средним наклонам волнового фронта в этих направлениях по суб-апертурам. Таким образом, ДВФ Шака-Гартмана (ДВФ Ш-Г) измеряет наклоны волнового фронта. Сам волновой фронт реконструируется (восстанавливается) из массива измеренных наклонов с точностью до константы, которая не играет роли для изображения.

Характеристики ДВФ Шака-Гармана:

    Амплитуда измеряемых аберраций - до 15 мкм.

    Точность измерений - λ/100 (RMS).

    Диаметр входного излучения - 8...100 мм.

Однако ДВФ Шака-Гартмана имеют один существенный недостаток: перекрестные помехи на ПЗС-матрицах. Они возникают, когда достаточно сильно искаженный волновой фронт падает на матрицу, поскольку при сильных отклонениях он может выйти за пределы своего подмассива и попасть на соседнюю матрицу. Таким образом, создается ложное пятно.

Но сегодня ошибки из-за перекрестных помех исключаются с помощью сложных алгоритмов. Они позволяют точно отслеживать и выводить истинное расположение пятна. Современное развитие алгоритмов и точности изготовления позволяют расширить область применения этих датчиков. Сегодня они нашли применение в различных системах проверки изображения.

Корректоры волнового фронта

Адаптивное зеркало - это исполнительный активный элемент адаптивной оптической системы, имеющий отражающую поверхность с деформируемым профилем. Деформируемые зеркала являются наиболее удобным инструментом для контроля волнового фронта и коррекции оптических аберраций.

Основные характеристики адаптивных зеркал:

    Диапазон перемещений (характеризуется чувствительностью привода в составе зеркала (обычно чувствительность выражается в перемещениях поверхности в микрометрах при увеличении управляющего напряжения на 1 В)).

    Область локальной деформации (отражает число степеней свободы зеркала (может быть задана эффективной шириной деформации единичной амплитуды, вызванной воздействием одного привода; функция, описывающая эту деформацию, называется функцией отклика)).

    Полоса пропускания частот (определяется быстродействием используемого привода (ограничена сверху механическими резонансами самой конструкции зеркала)).

Конструктивно адаптивные зеркала можно разделить на две большие группы:

1)Сегментированные зеркала.

2)Зеркала со сплошной поверхностью.

В сегментированных зеркалах каждая отдельная секция допускает ее перемещение и наклон (или только перемещение). Сплошное зеркало под воздействием специальных приводов испытывает сложные деформации.

Выбор той или иной конструкции определяется спецификой системы, в которой оно будет использовано. К основным факторам, которые учитываются в данном случае, относятся габаритный размер, масса и качество изготовления поверхности зеркала.

Сегментированные зеркала

Сегментированные зеркала состоят из отдельных независимых сегментов плоских зеркал. Каждый сегмент можно перемещать на небольшое расстояние и обратно для корректировки среднего значения волнового фронта.

Секционированные адаптивные зеркала с поступательным перемещением секций (рис.5, а) позволяют изменять только временные фазовые соотношения между сигналами от отдельных секций (длину оптического пути), а зеркала с перемещением и наклоном секций (рис.5, б) - также и пространственную фазу.

Рис. 5. Секционированные адаптивные зеркала: а) с поступательным перемещением секций, б) с перемещением и наклоном секций

Существенными недостатками секционированных зеркал является необходимость контроля положения отдельной секции и состояния ее поверхности, а также сложность реализации системы термостабилизации подобных зеркал.

1)Количество актуаторов - 100 – 1500.

2)Промежутки между актуаторами - 2-10 мм.

3)Форма электродов - прямоугольная или шестиугольная.

5)Амплитуда перемещения - несколько микронов.

6)Резонансная частота - несколько килогерц.

7)Стоимость - высокая.

Зеркала со сплошной поверхностью

Зеркала с дискретными приводами (Рис. 6.) образованы на передней поверхности тонкой деформируемой мембраны. Управление формой пластины осуществляется с помощью ряда отдельных приводов, которые крепятся к его задней стенке. Формы зеркала зависит от сочетания сил, действующих на переднюю панель, граничных условий (как плита крепится к зеркалу), а также геометрии и материала пластинки.

Эти зеркала позволяют плавно регулировать волновой фронт с очень большим числом (до нескольких тысяч) степеней свободы.

Рис. 6. Схема зеркала с дискретными приводами.

Биморфные зеркала

Биморфное зеркало (Рис.7.) состоит из двух пьезоэлектрических пластин, которые скреплены между собой и поляризованы в противоположных направлениях (параллельных осям). Между этими пластинами расположен массив электродов. Лицевая и обратная поверхности заземлены. В качестве отражающей поверхности используется лицевая сторона зеркала .

Рис.7. Схема биморфного зеркала.

В момент, когда к электроду прикладывается напряжение, одна из пластин сжимается, а противоположная - растягивается, что приводит к местному искривлению. Местная кривизна зеркала пропорциональна подаваемому напряжению, поэтому эти деформируемые зеркала также называют зеркалами кривизны.

Типичные параметры сегментных деформируемых зеркал:

1)Количество актуаторов – 18 - 35

2)Промежутки между актуаторами - 30-200 мм.

3)Форма электродов -радиальная.

5)Резонансная частота –более 500 Гц.

6)Стоимость - умеренная.

Мембранные зеркала.

Деформация мембраны этих зеркал достигается за счет действия магнитного поля. К мембране крепится набор магнитов прямо напротив соленоидов. При протекании тока по соленоидам возникают Лапласовы силы, которые и деформируют мембрану.

MOEMS (кремниевая технология)

MOEMS (Рис.8.) - микро-опто-электро-механические системы. Такие адаптивные зеркала изготавливаются с помощью микролитографии, подобно электронным микросхемам, отклонение маленьких элементов зеркала осуществляется электростатическими силами. Недостатками MOEMS являются недостаточные перемещения и малый размер элементов зеркала.

Рис.8. Принцип работы MOEMS зеркала

Другой метод управления фазой света – использование жидких кристаллов, как в мониторах, имеющих до миллиона управляемых элементов. До недавнего времени жидкие кристаллы были очень медленными, но сейчас это ограничение преодолено. Хотя фазовый сдвиг, вносимый жидкими кристаллами, остается очень маленьким и к тому же не стоит забывать, что он зависит от длины волны.

Заключение

Изучив в ходе данной работы устройство и характеристики компонентов адаптивных оптических систем, можно заключить о том, что разработка новых видов компонентов АОС не стоит на месте. Новые разработки в области фотоники и оптических материалов позволяют создавать более совершенные компоненты адаптивных систем с лучшими характеристиками, чем у их предшественников.

Список литературы:

    Вирт А., Гонсировский Т. Адаптивная оптика: согласование атмосферной турбулентности // Фотника, 2007, номер 6, стр. 10 – 15.

    Берченко Е.А., Калинин Ю.А., Киселев В.Ю., Полынкин М.А. Датчики волнового фронта // Лазерно-оптические системы и технологии, 2009, стр. 64–69.

    A.G. Aleksandrov, V.E. Zavalova, A.V. Kudryashov, A.L. Rukosuev, P.N. Romanov, V.V. Samarkin, Yu.V. Sheldakova, "Shack - Hartmann wavefront sensor for measuring the parameters of high-power pulsed solid-state lasers", QUANTUM ELECTRON , 2010, 40 (4), 321–326.

    Алиханов А.Н., Берченко Е.А., Киселёв В.Ю., Кулешов В.Н., Курчанов М.С., Нарусбек Э.А., Отсечкин А.Г., Прилепский Б.В., Сон В.Г., Филатов А.С., Деформируемые зеркала для силовых и информационных лазерных систем //Лазерно-оптические системы и технологии, ФГУП "НПО АСТРОФИЗИКА", М., 2009, стр. 54–58

    Воронцов М.А., Шмальгаузен В.И., Принципы адаптивной оптики, //Москва, Наука, (1985) ,стр. 336.

    Воронцов М.А., Корябин А.В., Шмальгаузен В.И., Управляемые оптические системы. //Москва, Наука, (1988), стр. 275.

    Krasheninnikov V. R. Estimation of Parameters of Geometric Transformation of Images by Fixed-Point Method / V. R. Krasheninnikov, M. A. Potapov // Pattern Recognition and Image Analysis. – 2012. – Vol. 22, № 2. – P. 303 –317.

Дополнительные источники информации:

    Лазерный Портал: http://www.laserportal.ru//

    Wikipedia: https://en.wikipedia.org/wiki/Adaptive_optics

    Astronet: http://www.astronet.ru/db/msg/1205112/part2/dm.html#SEC2.2

Россыпь звезд, будто подмигивающих наблюдателю, выглядит очень романтично. Но у астрономов это красивое мерцание вызывает вовсе не восхищение, а совершенно противоположные чувства. К счастью, есть способ исправить ситуацию.

Алексей Левин

Эксперимент, вдохнувший новую жизнь в науку о космосе, был выполнен не в знаменитой обсерватории и не на гигантском телескопе. Специалисты узнали о нем из статьи Successful Tests of Adaptive Optics, опубликованной в астрономическом журнале The Messenger в 1989 году. Там были представлены результаты испытаний электрооптической системы Come-On, предназначенной для корректировки атмосферных искажений света космических источников. Их провели с 12 по 23 октября на 152-см рефлекторе французской обсерватории OHP (Observatoire de Haute-Province). Система сработала настолько хорошо, что авторы начали статью утверждением, что «давняя мечта астрономов, работающих на наземных телескопах, наконец-то исполнилась благодаря созданию новой техники оптических наблюдений — адаптивной оптики».


А через несколько лет системы адаптивной оптики (АО) начали ставить на большие инструменты. В 1993 году ими оснастили 360-см телескоп Европейской южной обсерватории (ESO) в Чили, чуть позже — такой же инструмент на Гавайях, а затем и 8−10-метровые телескопы. Благодаря АО в наземные инструменты можно наблюдать светила в видимом свете с разрешающей способностью, которая была уделом лишь космического телескопа Hubble, а в инфракрасных лучах — даже с более высокой. Например, в очень полезном для астрономии участке ближней инфракрасной зоны с длиной волны 1 мкм Hubble обеспечивает разрешение в 110 угловых мс, а 8-метровые телескопы ESO — до 30 мс.

На самом деле, когда французские астрономы испытывали свою систему АО, в США уже существовали аналогичные устройства. Но создали их вовсе не для нужд астрономии. Заказчиком этих разработок был Пентагон.


Сенсор Шека-Хартмана работает так: покинув оптическую систему телескопа, свет проходит сквозь решетку из небольших линз, направляющих его на ПЗС-матрицу. Если бы излучение космического источника или искусственной звезды распространялось в вакууме или в идеально спокойной атмосфере, то все мини-линзы фокусировали бы его строго в центре отведенных им пикселей. Из-за атмосферных завихрений точки схождения лучей «гуляют» по поверхности матрицы, и это позволяет реконструировать сами возмущения.

Когда воздух помеха

Если наблюдать в телескоп две звезды, расположенные на небосводе очень близко друг к другу, их изображения сольются в одну светящуюся точку. Минимальное угловое расстояние между такими звездами, обусловленное волновой природой света (дифракционный предел), — это и есть разрешающая способность прибора, и она прямо пропорциональна длине волны света и обратно пропорциональна диаметру (апертуре) телескопа. Так, для трехметрового рефлектора при наблюдениях в зеленом свете этот предел составляет около 40 угловых мс, а для 10-метрового — чуть больше 10 мс (под таким углом мелкая монета видна с расстояния 2000 км).

Однако эти оценки справедливы только для наблюдений в вакууме. В земной атмосфере постоянно возникают участки локальной турбулентности, которая несколько сотен раз в секунду изменяет плотность и температуру воздуха и, следовательно, его показатель преломления. Поэтому в атмосфере фронт световой волны от космического источника неминуемо расплывается. В результате реальная разрешающая способность обычных телескопов в лучшем случае составляет 0,5−1 угловую секунду и сильно не дотягивает до дифракционного предела.


Ранее размеры корректируемых зон небосвода ограничивались клетками со стороной в 15 угловых мс. В марте 2007 года на одном из телескопов ESO была впервые опробована мультисопряженная адаптивная оптика (MCAO). Она прощупывает турбулентности на разных высотах, что позволило увеличить размер корректируемого поля зрения до двух и более угловых минут. «В этом столетии возможности АО сильно расширились, — говорит «ПМ» профессор астрономии и астрофизики Клэр Макс, директор Центра адаптивной оптики Калифорнийского университета в Санта-Крус. — На больших телескопах установлены системы с двумя и тремя деформируемыми зеркалами, к числу которых относится и МСАО. Появились новые сенсоры волнового фронта и более мощные компьютерные программы. Созданы зеркала с микроэлектромеханическими актуаторами, позволяющими изменять форму отражающей поверхности лучше и быстрее, чем актуаторы на пьезоэлектриках. В последние годы разработаны и опробованы экспериментальные системы мультиобъектной адаптивной оптики (МОАО), с помощью которых можно одновременно отслеживать до десяти и более источников в поле зрения диаметром 5−10 угловых минут. Их установят на телескопах нового поколения, которые приступят к работе в следующем десятилетии».

Путеводные звезды

Представим себе прибор, который сотни раз в секунду анализирует прошедшие через телескоп световые волны на предмет выявления следов атмосферных завихрений и по этим данным изменяет форму деформируемого зеркала, помещенного в фокусе телескопа, чтобы нейтрализовать атмосферные помехи и в идеале сделать изображение объекта «вакуумным». В этом случае разрешающая способность телескопа ограничивается исключительно дифракционным пределом.

Однако есть одна тонкость. Обычно свет далеких звезд и галактик чересчур слаб для надежной реконструкции волнового фронта. Другое дело, если рядом с наблюдаемым объектом имеется яркий источник, лучи от которого идут к телескопу почти по такому же пути, — ими-то и можно воспользоваться для считывания атмосферных помех. Именно такую схему (в несколько урезанном виде) в 1989 году опробовали французские астрономы. Они выбрали несколько ярких звезд (Денеб, Капеллу и другие) и с помощью адаптивной оптики действительно улучшили качество их изображений при наблюдениях в инфракрасном свете. Вскоре такие системы, использующие звезды-маяки (guide stars) земного небосвода, начали применять на больших телескопах для реальных наблюдений.


Но ярких звезд на земном небе немного, так что эта методика пригодна для наблюдений всего лишь 10% небесной сферы. Но если природа не создала подходящее светило в нужном месте, можно создать искусственную звезду — с помощью лазера вызвать на большой высоте свечение атмосферы, которое станет опорным источником света для компенсирующей системы.

Этот метод в 1985 году предложили французские астрономы Рено Фуа и Антуан Лабейри. Примерно тогда же к аналогичным выводам пришли и их коллеги из США Эдвард Кибблуайт и Лэйрд Томсон. В середине 1990-х лазерные излучатели в паре с аппаратурой АО появились на телескопах средних размеров в Ликской обсерватории в США и в обсерватории Калар Альто в Испании. Однако этой технике понадобилось около десяти лет, чтобы она нашла применение на 8−10-метровых телескопах.


Исполнительный элемент системы адаптивной оптики — это деформируемое зеркало, изгибаемое с помощью пьезоэлектрических или электромеханических приводов (актуаторов) по командам системы управления, которая получает и анализирует данные об искажениях от датчиков волнового фронта.

Военный интерес

История адаптивной оптики имеет не только явную, но и тайную сторону. В январе 1958 года в Пентагоне учредили новую структуру, Управление перспективных оборонных исследовательских проектов — Advanced Research Projects Agency, ARPA (сейчас DARPA), ответственное за разработку технологий для новых поколений оружия. Это ведомство сыграло первостепенную роль в создании адаптивной оптики: для наблюдения за советскими орбитальными аппаратами требовались нечувствительные к атмосферным помехам телескопы с максимально высоким разрешением, а в перспективе рассматривалась задача создания лазерного оружия для уничтожения баллистических ракет.

В середине 1960-х под контролем ARPA была запущена программа изучения атмосферных возмущений и взаимодействия лазерного излучения с воздухом. Этим занимались в исследовательском центре RADC (Rome Air Development Center), расположенном на авиабазе Гриффис в штате Нью-Йорк. В качестве опорного источника света использовали мощные прожектора, установленные на пролетающих над полигоном бомбардировщиках, и это было столь впечатляющим, что испуганные жители порой обращались в полицию!


Весной 1973 года ARPA и RADC подрядили частную корпорацию Itec Optical Systems для участия в разработке приборов, компенсирующих рассеивание света под действием атмосферных возмущений, в рамках программы RTAC (Real-Time Atmospheric Compensation). Сотрудники Itec создали все три главных компонента АО — интерферометр для анализа возмущений светового фронта, деформируемое зеркало для их исправления и систему управления. Их первое зеркало двухдюймового диаметра было сделано из стекла, покрытого отражающей пленкой из алюминия. В опорную пластинку были встроены пьезоэлектрические актуаторы (21 штука), способные под действием электрических импульсов сокращаться и удлиняться на 10 мкм. Уже первые лабораторные тесты, проведенные в том же году, свидетельствовали об успехе. А следующим летом новая серия тестов продемонстрировала, что экспериментальная аппаратура может исправить лазерный луч уже на расстояниях в несколько сотен метров.

Эти чисто научные эксперименты еще не были засекречены. Однако в 1975 году была утверждена закрытая программа CIS (Compensating Imaging System) разработки АО в интересах Пентагона. В соответствии с ней были созданы более совершенные сенсоры волнового фронта и деформируемые зеркала с сотнями актуаторов. Эту аппаратуру установили на 1,6-метровом телескопе, расположенном на вершине горы Халеакала на гавайском острове Мауи. В июне 1982 года с ее помощью впервые удалось получить фотографии искусственного спутника Земли приемлемого качества.


С лазерным прицелом

Хоть эксперименты на Мауи продолжались еще несколько лет, центр разработки переместился в особую зону авиабазы Киртленд в штате Нью-Мексико, на секретный полигон Sandia Optical Range (SOR), где уже давно работали над лазерным оружием. В 1983 году группа под руководством Роберта Фьюгейта приступила к экспериментам, в ходе которых предстояло изучить лазерное сканирование неоднородностей атмосферы. Эту идею в 1981 году выдвинул американский физик Джулиус Фейнлейб, и теперь ее нужно было проверить на практике. Фейнлейб предложил использовать в системах АО упругое (рэлеевское) рассеяние квантов света на неоднородностях атмосферы. Некоторые из рассеянных фотонов возвращаются в точку, из которой ушли, и в соответствующем участке небосвода возникает характерное свечение почти точечного источника — искусственная звезда. Фьюгейт с коллегами регистрировали искажения волнового фронта отраженного излучения на пути к Земле и сравнивали их с аналогичными возмущениями звездного света, пришедшего с этого же участка небосвода. Возмущения оказались почти идентичными, что подтвердило возможность использования лазеров для решения задач АО.

Эти измерения не требовали сложной оптики — хватило простых зеркальных систем. Однако для более надежных результатов их надо было повторить на хорошем телескопе, который и был установлен на SOR в 1987 году. Фьюгейт с помощниками провели на нем эксперименты, в ходе которых и родилась адаптивная оптика с рукотворными звездами. В феврале 1992 года было получено первое значительно улучшенное изображение небесного тела — Бетельгейзе (самого яркого светила созвездия Ориона). Вскоре возможности метода продемонстрировали на фотографиях еще ряда звезд, колец Сатурна и других объектов.


Группа Фьюгейта зажигала искусственные звезды мощными лазерами на парах меди, генерировавшими 5000 импульсов в секунду. Столь высокая частота вспышек позволяет сканировать даже самые короткоживущие турбулентности. На смену интерферометрическим сенсорам волнового фронта пришел более совершенный сенсор Шека-Хартмана, изобретенный в начале 1970-х годов (кстати, тоже по заказу Пентагона). Зеркало с 241 актуатором, поставленное фирмой Itec, могло изменять форму 1664 раза в секунду.

Поднять повыше

Рэлеевское рассеяние довольно слабо, поэтому его возбуждают в диапазоне высот 10−20 км. Лучи от искусственной опорной звезды расходятся, в то время как лучи от гораздо более далекого космического источника строго параллельны. Поэтому их волновые фронты искажаются в турбулентном слое не совсем одинаково, что сказывается на качестве скорректированного изображения. Звезды-маяки лучше зажигать на большей высоте, но рэлеевский механизм здесь непригоден.

Весной 1991 года Пентагон решил снять гриф секретности с большей части работ по адаптивной оптике. Рассекреченные результаты 1980-х годов стали достоянием астрономов.

Эту проблему в 1982 году разрешил профессор Принстонского университета Уилл Харпер. Он предложил воспользоваться тем, что в мезосфере на высоте порядка 90 км много атомов натрия, скопившихся там из-за сгорания микрометеоритов. Харпер предложил возбуждать резонансное свечение этих атомов с помощью лазерных импульсов. Интенсивность такого свечения при равной мощности лазера на четыре порядка выше силы света при рэлеевском рассеянии. Это была только теория. Ее практическое воплощение стало возможным благодаря усилиям сотрудников Линкольновской лаборатории, расположенной на авиабазе Хэнском в штате Массачусетс. Летом 1988 года они получили первые снимки звезд, выполненные с помощью мезосферных маяков. Однако качество фотографий не было высоким, и реализация метода Харпера потребовала многолетней шлифовки.


B 2013 году был успешно испытан уникальный прибор Gemini Planet Imager для фото- и спектрографирования экзопланет, предназначенный для восьмиметровых телескопов Gemini. Он позволяет с помощью АО наблюдать планеты, чья видимая яркость в миллионы раз меньше яркости звезд, вокруг которых они обращаются.

Весной 1991 года Пентагон решил снять гриф секретности с большей части работ по адаптивной оптике. Первые сообщения о ней были сделаны в мае на конференции Американской астрономической ассоциации в Сиэтле. Вскоре последовали и журнальные публикации. Хотя американские военные продолжали заниматься адаптивной оптикой, рассекреченные результаты 1980-х годов стали достоянием астрономов.

Великий уравнитель

«АО впервые дала возможность наземным телескопам получать данные о структуре очень далеких галактик, — говорит профессор астрономии и астрофизики Клэр Макс из университета в Санта-Крус. — До наступления эры АО их можно было наблюдать в оптическом диапазоне лишь из космоса. Все наземные наблюдения движения звезд вблизи сверхмассивной черной дыры в центре Галактики ведутся также с помощью АО.


АО много дала и для изучения Солнечной системы. С ее помощью получена обширная информация о поясе астероидов — в частности, о двойных астероидных системах. АО обогатила знания об атмосферах планет Солнечной системы и их спутников. Благодаря ей вот уже лет пятнадцать ведутся наблюдения газовой оболочки Титана, самого большого спутника Сатурна, позволившие отследить суточные и сезонные изменения его атмосферы. Так что уже накоплен обширный массив данных о погодных условиях на внешних планетах и их сателлитах.

В определенном смысле адаптивная оптика уравняла возможности земной и космической астрономии. Благодаря этой технологии крупнейшие стационарные телескопы с их гигантскими зеркалами обеспечивают куда лучшее разрешение, чем «Хаббл» или еще не запущенный ИК-телескоп «Джеймс Уэбб». К тому же измерительные приборы для наземных обсерваторий не имеют жестких весовых и габаритных ограничений, которым подчинено проектирование космической аппаратуры. Так что вовсе не будет преувеличением сказать, — закончила профессор Макс, — что адаптивная оптика радикально преобразовала многие ветви современной науки о Вселенной».

АДАПТИВНАЯ ОПТИКА, раздел оптики, занимающийся разработкой методов и средств управления формой волнового фронта (ВФ) с целью устранения искажений (аберраций), возникающих при распространении светового пучка в оптически неоднородной среде (например, турбулентной атмосфере) или из-за несовершенства элементов оптической системы.

Цель адаптивной коррекции - повышение разрешающей способности оптических приборов, повышение концентрации излучения на приёмнике, достижение максимально острой фокусировки светового пучка на мишени или получение заданного распределения интенсивности излучения. Возможности применения активных методов в оптике стали обсуждаться с начала 1950-х годов в связи с проблемой повышения разрешающей способности наземных телескопов, однако интенсивное развитие адаптивной оптики началось после создания достаточно эффективных корректоров (управляемых зеркал) и измерителей (датчиков) ВФ. Простейшая адаптивная система содержит одно плоское зеркало, наклон которого можно изменять, что позволяет устранить «дрожание» изображения при наблюдении сквозь турбулентную атмосферу. В более сложных системах используются корректоры с большим числом степеней свободы, позволяющие компенсировать аберрации высших порядков. Типичная схема организации управления в адаптивной системе (рисунок) построена по принципу обратной связи. Часть светового потока после корректора ответвляется и поступает на датчик ВФ, где измеряются остаточные аберрации. Эта информация используется для формирования сигналов в блоке управления, воздействующих на корректор и уменьшающих остаточные аберрации. Они становятся минимальными, качество изображения улучшается.

Существуют системы, не требующие использования датчиков ВФ. В этом случае минимизация искажений проводится путём преднамеренного внесения в ВФ пробных возмущений (метод апертурного зондирования). Затем влияние пробных возмущений на качество работы системы анализируется в блоке управления, после чего формируются управляющие сигналы, оптимизирующие ВФ. Системы апертурного зондирования требуют больших затрат времени на настройку корректора, так как для заметного уменьшения искажений процесс повторяется несколько раз.

Эффективность адаптивной оптической системы в значительной мере определяется совершенством применяемого корректора. Вначале использовались главным образом составные (сегментированные) зеркала, состоящие из нескольких сегментов, которые могли смещаться относительно друг друга с помощью пьезоприводов или иным способом. Впоследствии получили распространение гибкие («мембранные») зеркала с непрерывно деформируемой поверхностью. К началу 21 века техника коррекции ВФ значительно усовершенствовалась. Кроме управляемых зеркал различных типов применяют жидкокристаллические фазовые модуляторы, которые могут работать как на отражение (подобно зеркалам), так и на просвет. Ряд конструкций допускает их миниатюризацию и создание устройств, интегрированных в единый блок с управляющей электроникой, что позволяет создавать компактные и сравнительно недорогие адаптивные системы. Однако, несмотря на разработку фазовых корректоров нового поколения, традиционные гибкие зеркала сохраняют своё значение благодаря малым потерям светового потока и сравнительно простой конструкции. В лазерных системах применяют также нелинейно-оптические методы коррекции искажений, основанные на явлении обращения волнового фронта. Этот подход называют иногда нелинейной адаптивной оптикой.

Лит.: Воронцов М. А., Шмальгаузен В. И. Принципы адаптивной оптики. М., 1985; Тараненко В. Г., Шанин О. И. Адаптивная оптика. М., 1990; Лукин В. П., Фортес Б. В. Адаптивное формирование пучков и изображений в атмосфере. Новосиб., 1999.

В. И. Шмальгаузен.

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама